Code :R7310206

III B.Tech I Semester (R07) Supplementary Examinations, May 2011 LINEAR SYSTEMS ANALYSIS (Electrical & Electronics Engineering)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks Max Marks: 80

- 1. (a) What are the state variables chosen in Analysis of electrical circuits?
 - (b) Write state variable equation for the following differential equation:

$$y + 5y + 6y = \sin t + 5e^{-t}$$

(c) Find state equation for the network shown in fig.

2. (a) Find the RMS & average values of the periodic function shown in Figure:1.

Figure 1: Figure for Question No.2(a)

Figure 2: Figure for Question No.2(b)

- (b) Find the exponential Fourier series for the waveform shown in Figure:2
- 3. (a) Show that it is possible to concert an exponential Fourier series into trigonometric one.
 - (b) Find evens and odd components of the function e^{-at} cu(t).
- 4. (a) State the convolution Theorem and determine the Laplace transform of the given function by using convolution theorem $G(s) = \frac{s}{(s+1)(s+5)}$.
 - (b) A voltage pulse of 10V magnitude and $5\mu\,\mathrm{sec}$ duration is applied to the Rc n/w shown in fig using l-T method.

- 5. (a) State the properties of Huercuitz polynomial.
 - (b) Determine the range of constant K for the polynomial $p(s) = s^4 + ks^3 + s^2 + 2s + 1$ to be Huruitz through polynomial.
- 6. Realize the driving point impedance $Z(s) = \frac{(s+2)(s+5)}{(s+1)(s+3)}$ in Fouler Fist Form and Cauer's First Form.
- 7. Explain the following with suitable examples:
 - (a) Impulse Sampling.
 - (b) Natural and falte top sampling.
 - (c) Band pass sampling.
 - (d) Power density spectrum.
- 8. (a) What are the difference between continuous and discrete time signal.
 - (b) Obtain the inverse z transform of the following:

i.
$$X(z) = \frac{10}{(z-1)(z-2)}$$

ii.
$$\frac{1+z^{-1}-z^{-2}}{1-z^{-1}}$$

iii.
$$\frac{z-4}{(z-1)(z-2)^2}$$
